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ABSTRACT: Normal incident acoustic techniques were used to
determine values of sediment properties (acoustic impedance,
sound speed, bulk density, porosity, shear strength, water content,
and mean grain size) and map those (acoustic impedance and
grain size) in the northeastern Gulf of Mexico. The acoustic data
were acquired using a 11 kHz normal incident echo sounder over
approximately 2000 km of track line. A calibration factor for echo
strength was determined by the comparison of acoustic data to
measured impedance from five core samples (ground truth data).
This echo strength calibration was used for the entire data set. Val-
ues of sediment properties were calculated from sediment imped-
ance using the regressions compiled from the historical core
database. Comparison of ground truth and echo strength to data
from 20 additional core locations shows close agreement. Discrep-
ancies are probably due to navigation errors or weak returns in
deeper water. In addition, sediment disturbance and frequency dis-
persion can be considered. Using acoustic derived sediment prop-
erties, four sediment provinces of the study area are defined as the
following types: sandy/silty clay (impedance, 1.6—2.0 10° kg/m’ s),
sand-silt-clay and/or clayey sand (impedance, 2.01-2.40 10° kg/m®
s), silt or fine sand (impedance, 2.41-2.90 10° kg/m’ s), medium/
coarse sand (impedance, 2.91-4.0 10° kg/m’ s). The areal distri-
butions of the four types coincide with the previous reports based
on sediment sampling. Therefore, the acoustic technique can effec-
tively be used to define and classify sediments and map sediment
provinces.

Keywords: sediment types, acoustic seafloor sediment classification,
Gulf of Mexico :

1. INTRODUCTION

Acoustic seafloor sediment classification system that can
remotely- estimate sediment type and geotechnical proper-
ties has been widely used in various fields of in marine
geology, civil engineering, fisheries, and military science
(Lambert, 1988; Lambert and Fiedler, 1991; Lambert et al.,
1993, 2002; Walter et al., 1997, 1998, 2002; Richardson et
al., 2002). Conventionally, seafloor sediment properties have
been determined from core and grab sediments. This pro-
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cess is slow, labor intensive, expensive, and does not pro-
vide either real time or in situ data collection. Also the data
represent only the properties of the sediments at a specific
and limited location and .do not provide quantification of
the highly variable nature of shallow water sediments. On
the other hand, acoustic seafloor sediment classification
system has been able to.accurately predict, in near real-
time, acoustic properties (sound speed, acoustic impedance,
and attenuation), sediment type (grain size), and a number
of selected geotechnical properties (bulk density, porosity,
and shear strength) of the upper several meters of the sea-
floor while in an underway survey (Lambert, 1988; Lam-
bert and Fiedler, 1991; Lambert et al., 1993, 2002).

Sediment type in this study was determined from re-pro-
cessing of acoustic data acquired by Acoustic Sediment
Classifier System (ASCS) of Naval Research Laboratory
(NRL). For re-processing of the data, Submarine Sediment
Classifier (SSC) newly developed by NRL was used. The
ASCS system has been successfully used to characterize
sediment properties at Chesapeake Bay of Maryland, near-
the Dry Tortugas of Florida, and along the California Con-
tinental Shelf near the Eel River (Walter et al., 1997, 1998,
2002; Richardson et al., 2002). But the determination of
sediment type using SSC is not known yet.

The objectives of this paper are to define sediment type
(especially grain size), in the northeastern Gulf of Mexico,
and to compare values of sediment properties measured in the
laboratory from sediments collected with corers or grabs.

2. PHYSICAL SETTING

The northeastern Gulf of Mexico including the study area
(Fig. 1) is micro-tidal with an average tidal range of 0.4 to
0.5 m. Tidal currents on the shelf are generally less than 15
cm/s (Schroeder et al., 1994; Clarke, 1994), whereas wind
driven alongshore surface currents can be as high as 40-50
cm/s with strongest currents in the winter and early spring
associated with the passage of cold fronts (Schroeder et al.,
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Fig. 1. Locations of core and grab and track lines. Five solid circles are core locations selected for determination of calibration factor ol
echo strength. Abbreviation C and G at station indicate core and grab locations, respectively.

1987). Tropical storms (Hurricanes) can generate strong
currents up to 160 cm/s and rework sediments to water
depths of 100 m (Moeller et al., 1993; Murray, 1970).

The Mississippi River, the largest sediment source in the
Gulf of Mexico, is located in the southwestern part of the study
area. This river system has been significantly influenced depo-
sitional patterns in the northemn Gulf of Mexico (Coleman,
1988). According to Coleman (1988), the river currently dis-
charges an average of 15,360 m%s of fresh water into the Gulf
of Mexico, with maximum and minimum discharges of 57,900
and 2,830 m/s, respectively. Annual sediment discharge is esti-
mated at about 6.21x10" kg with 75% transported as bedload
and 25% as suspended load (Fisk and McFarlan, 1954).

The northeastern shelf (shallower than 100 m in water
depth) of the Gulf of Mexico has been strongly influenced
by fluctuations of sea level during the Quaternary (Frazier,
1974; Beard et al., 1982). The water depth abruptly deepens
southeastward from 150 to over 500 m. The shelf area is
largely covered with relict sand (late Pleistocene and early
Holocene age) and/or modern sandy and muddy deposits
mainly originating from the Mississippi River (Mazzullo
and Bates, 1985: Kindinger, 1989).

3. METHODS
3.1. Ground Truth Data

The core and grab samples (23 core and 8 grab sediment
samples, Fig. 1) acquired during Northern Gulf Littoral Ini-

tiative (NGLI) project (Sawyer et al., 2001) are used both
for calibration and as ground truth (impedance, sound
speed, porosity, density, and mean grain size) for acoustic
predictions. Non-destructive measurements to determine
the physical properties of the core samples were only made
on whole-round core sections utilizing Geotek Multi-Sensor
Core Logger (MSCL; Schultheiss and McPhail, 1989).
Core Logger data were acquired at constant intervals of |
cm and periods of 2 seconds, from the top to bottom depth
of each section of core after the sediment cores were equil-
ibrated to ambient laboratory room temperature (approxi-
mately 23°C). The Core Logger uses a pair of 500 kHz
piezo-electric ceramic transducer to measure p-wave veloc-
ity and wet bulk density is measured by gamma-ray atten-
uation, using a 137-Cs gamma source and scintillation
counter. Derivative acoustic impedance and fractional
porosity are additionally calculated for each sample inter-
val. Fractional porosity values are reported relative to an
average grain density value of 2.65 g/cm’, and a pore water
density of 1.026 g/cm®. P-wave velocity values are reported
at a standard laboratory temperature of 23°C and 35%o
salinity. Grab samples were only used for grain size anal-
ysis.

Surficial samples (~0-50 cm below the seafloor) were
analyzed from core (10 cm intervals) and grab (0-10 cm)
samples for grain size statistics The depth was determined
based on a pulse length of 0.54 m based on a center fre-
quency of 11 kHz and four wavelengths in the duration of
the pulse (Walter, 1998) and sediment type. Classical siev-
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ing techniques weie utilized for the sand sized sediments
(Folk, 1974), and the fine particles (silt and clay) were mea-
sured using pipette analysis and a Micromeritics Model
5000 Sedigraph (Briggs, 1994).

3.2. Acoustic Data from ASCS

The acoustic data for sediment classification was acquired
using a 11 kHz normal incident echo sounder for approx-
imately 2000 km of track line in the northeastern Gulf of
Mexico during May 2000. Acoustic data from the upper
surficial sediment (~50 cm, considering the pulse length of
0.54 m) were used to calculate values of acoustic impedance.

The ASCS is a normal incidence, narrow beam-width,
multi-frequency, high-resolution, and digital acoustic pro-
filing system that records and displays, in the form of a seis-
mic waterfall plot, real-time echo return intensity (amplitude)
from seafloor and subbottom sediments (Fig. 2). This sys-
tem is typically operated using a short pulse length (0.1 to
0.3 milliseconds) with a narrow-beam transducer (12" at 11 kHz).
The narrow beam method is intended to concentrate the
acoustic energy within a small area of the seafloor to reduce
extraneous acoustic scatter and anomalous late returns that
occur from outer limit of the non-planar wave of wide-
beam system (Walter, 1998). Using acoustic technique, sed-
iment properties can be mapped at real time during the survey,
and can be reprocessed using SSC in laboratory (Fig. 2).

The ASCS and SSC based on multi-layer acoustic theory
(Clay and Medwin, 1977) use echo-strengths reflected from
sediment to compute acoustic impedance (Lambert, 1988;
Wilter et al., 1998). The reflected pulses are digitized and
stored on an optical disk at a sampling rate of 125 kHz for

processing (Fig. 2). This reflection coefficient (R) is defined
as the portion of the sound pressure wave reflected off the
seafloor, divided by the incident sound pressure wave
impinging on the bottom; that is. the ratio of the reflected
wave (Pr) to the incident wave (Pi). Therefore; -

R=Pr/Pi

and, for a normally incident acoustic wave, this reflection
coefficient is related to acoustic impedance by the following
relationship;

R=Pr/Pi={(p:V2)~(p: VOV (P2 V2 Hp VD=2 Z W2t 2)

where pi, Vi, Zyand ps, Vs, Zs are the density, compres-
sional wave velocity and acoustic impedance values in the
water column and the surficial sediments, respectively. This
system uses an assumed seawater impedance of 1.5x10% g/
cm® s. From the above equation, the sediment impedance Z»
is determined (Walter, 1998). Therefore, the grain size data
including geotechnical properties can be estimated from
empirical relationships between acoustic impedance and
geotechnical properties (Richardson and Briggs, 1993).

3.3. Calibration and Re-Processing Using SSC System

The calibration factor for echo strength amplitude of SSC
was determined by matching values of impedance acquired
from five core samples (Table 1) collected on the acoustic
track line. Impedance values were averaged from the upper
50 cm of core data and from 5 acoustic ping data along seis-
mic tracks which were closest to the core samples. Acoustic
impedance obtained from ground truth core and SSC were
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Table 1. Sediment properties measured and estimated from the five cores and ASCS in order to determine calibration factor.

. Impedance Densit Attenuation Porosit Grain size Velocit .
Locations Methods (1 O“pkg /ms) (2 /cm"))/ (dB/m kHz) (%) Y ®) () Y Sediment type
599C-1 Core 2.89 1.84 49.9 7.9 1571 Sandy clay
ASCS 294 1.84 0.61 51.9 4.75 1619 Mud
599C-6 Core 2.18 1.45 73.7 6.23 1500 Clayey sand
ASCS 2.09 1.39 0.10 80.9 8.92 1537 Mud
599C-8 Core 333 1.99 409 1676
ASCS 3.40 2.00 051 40.7 2.49 1705 Sand
599C-9 Core 328 1.96 425 25 1675 Clayey sand
ASCS 3.20 1.94 0.70 46.0 3.62 1669 Sand
299C-10 Core 3.48 2.04 37.9 1712
ASCS 343 2.01 0.51 41.1 2.5 1721 Sand
407 S T these sites. The acoustic data in Table | represents an aver-
1 ; 23321?0 age value for five consecutive pings at the closest point
]| & 599C6 /,2=0‘99? along any track line to the core sites. In most cases, the
£ 3% ; 23382? T ASCS acoustic footprint (a half size of an acoustic foot-
g ] : print=tan 6° (water depth), for example, 5.26 m in water depth
3 ] of 50 m) did not include the exact location of the core,
O 30— which may partly account for the difference between values
8 i of ground truth measurements and acoustic predictions. In
F;i - addition, the differences may be caused by sediment dis-
E L1 . turbance including compaction or loss during core collec-
- tion, and compaction or grain reorientation during transport
i / : and measurement, frequency dispersion, sound speed
1 [Average calibration factor: 2.1e-006|  anisotropy, or by the natural fine scale variability of sedi-
20 e o e ) ments (Richardson, 1986; Richardson et al., 1997). Fre-
20 25 3.0 35 40 quency dispersion may result in values of sound speed

Impedance (ASCS)

Fig. 3. Correlation of impedance values obtained from the core
(ground truth) and acoustic (ASCS) data used for determination of
calibration factor. The calibration factor is averaged by the values
obtained from five cores. Note that two data show good correlation
("=0.99).

highly correlated (+"=0.99) (Fig. 3). Therefore, the calibra-
tion factor of 2.1e-006 can be used with confidence to pre-
dict value of sediment properties at other sites along the 200
km of track lines. This echo strength calibration was used
for re-processing the entire data set. After re-processing
using SSC, the colored track plots (acoustic impedance and
grain size) are created by ArcView software (Fig. 2).

4. RESULTS AND DISCUSSION
4.1. Comparison of Ground Truth and ASCS Data

Table 1 contains values of the sediment properties (acous-
tic impedance, bulk density. attenuation, porosity, sound
speed, and mean grain size) obtained from five core sam-
ples (average values for the upper 50 cm) and the associated
acoustically predicted ranges (ASCS data) in proximity to

measured at 500 kHz (ground truth data) as much as 50 m s
higher than ASCS acoustic data, acquired as frequency of
11 kHz, especially in sandy sediments (Williams et al.,
2002). Richardson (1986) shows considerable vertical and
horizonta! variability of sound speed and other sediment
physical properties at centimeter to meter scales. The longer
wavelength and larger footprint tend to average out this
fine-scale variability. In spite of the differences between
ground truth measurements and acoustic predictions, the
relationship between ground truth (core samples) and acoustic
data are nearly identical (Fig. 4). Therefore, acoustic tech-
niques can be used with confidence to determine sediment
properties of seafloor. '
However, the ability of an acoustic sediment classifica-
tion system to accurately predict values of sediment phys-
ical properties and to map sediment provinces is dependent
on accurate estimation of sediment impedance from the
acoustic returns and applicability and uncertainty associated
with the empirical regressions used to predict sediment
properties from sediment impedance. As described in the
previous figures (Figs. 3 and 4), acoustic returns provide a
reasonable estimate of acoustic impedance compared well
to ground truth data. The large confidence limits of the pre-
diction probably result more from issues associated with
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collocation of laboratory and acoustic estimates of imped-
ance in these the highly variable sediments than from sed-
iment disturbance, frequency dispersion or any inherit
uncertainty associated with the calibration factor.

4.2. Areal Distribution of Sediment Types

Acoustic images and colored track plots using data sets
processed by ASCS provide highly detailed maps of the dis-
tribution of values of sediment properties (acoustic impedance,
grain size) in the northeastern Gulf of Mexico.

Acoustic impedance, the product of compressional wave
velocity and bulk density, is computed using acoustic echo-
strength reflected at the seafloor. Values of impedance range
from 1.60 to 4.00x10°kg/m* s, with both the highest and

25
Impedance (106kg/mzs)

3.0 35

4.0

of core sites and acoustic track lines
are not exactly the same. But the
trends are nearly identical.

lowest values of impedance found in the deepest water
depth of the study area (Fig. 5). ‘

Based on acoustic impedance values (Lambert, 1988), the
study area may be geographically divided into four sedi-
ment types (Fig. 5; Table 2): i.e., type A (impedance, range
=1.6-2.0x10° kg/m’ s), type B (impedance, range=2.01-2.40
x10° kg/m’ s), type C (impedance, range=2.41-2.90x10° kg/m’
s), type D (impedance, range=2.91-4.0x10% kg/m’ s). The
boundaries in each type are distinct based on sediment
impedance, and the track plot of mean grain size (Fig. 6) also
matches well with the acoustic impedance map (Fig. 5).

Sediments in type A have the lowest values of impedance
(with a range of 1.6-2.0x10° kg/m’ s) and are mainly present
at the southernmost and southwestern part of the study area
but also occurs intermittently at the eastern tip (Figs. 5 and
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Table 2. Impedance and grain size values of types A, B, C, and D divided by acoustic data.

Types Impedance (10°kg/m’ s) Grain size (¢) Sediment type
Type A 1.60-2.00 9.1-10.0 sandy and/or silty clay
Type B 2.01-2.40 6.1-9.0 sand-silt-clay and/or clayey sand
Type C 2.41-2.90 3.1-6.0 silt and fine sand
Type D 291-4.0 0.2-3.0 medium/coarse sand
SO0OW  89°300°W  B9°00°W  88300°W  68°00"W  BT'300'W  €7'00W
30°300°N [ : U; Ja0v300"N
30°00°N - Ja0r0oN
Grain size
20°900N | 3o, moz.10 |129°300N
h O Fig. 6. Colored track plots of surficial
#3140 sediment grain size (¢) processed by
- SN\, G B - ASCS. The distribution pattern is sim-
WOINE sy T mlﬁ*" s1.70 17700 ilar to Figure 5. These distributions are
1743255 | = o1 00 similar to the previous results (Lud-
& 91100 wick, 1964; Mazzullo and Bates,
) . ) ) ) Bl 1985; Sawyer et al., 2001) collected by
0O0OW  B0°I00W  BO00'W  88-300'W  BEDOW  87°300°W  87T00W core and grab samples.

6). By acoustic data, the sediments of type A are sandy clay
and/or silty clay having a 9.1~10¢ in mean grain size (Table 2).

Type B exists at the westernmost part of the study area
including Mississippi Delta (Figs. 5 and 6). Acoustic impedance
and mean grain size of type B calculated from acoustic data
is 2.01 to 2.40x10° kg/m* s and 6.1-9.0¢. Thus, type B is
sand-silt-clay and/or clayey sand (Table 2). Types A and B
are most likely deposited by the west-flowing longshore
current along the barrier islands well developed in the
northern part of the study area (Boone, 1973). These islands

have been migrating to the west at rapid rates (Waller and
Malbrough, 1976; Bymes et al., 1991). Wave energy in the
Northern Gulf of Mexico generally increases to the east due
to the sheltering effect of the Mississippi Delta (Richard,
1997). Thus, longshore transport of sediment along this
northern coast is generally thought to be east to west, Types
A and B correspond closely to Holocene sand, silt, and clay
deposited in association with the Mississippi Delta (Lud-
wick, 1964; Mazzullo and Bates, 1985).

Sediments from type C (impedance, 2.41-2.90x 10°kg/m?
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distribution pattern matches with the present result grouped by types A, B, C, and D. Contours in meters.

s) are widely distributed in the central and northern part of
the study area (Figs. 5 and 6). The sediments determined by
acoustic data are silt and fine sand with a mean grain size
of 3.1 and 6.0 ¢ (Table 2). Type C is probably regarded as
a relict Pleistocene deposit (Mazzullo and Bates, 1985;
Kindinger, 1989).

Sediments in type D (impedance, 2.91-4.0 10° kg/m’ s)
are distributed in a narrow east-northeast to west-southwest
band (red segment of the track lines) approximately at the
75 m shelf break (Figs. 5 and 6). By acoustic data, the sed-
iments are medium to coarse sand with the range of 0.2 to
3.0 ¢ in mean grain size (Table 2). This indicates the presence
of hard bottom as well as coarse sand and/or gravel. Type D
is compared well with Mississippi-Alabama Reef and Inter-
reef types described by Mazzullo and Bates (1985).

Based on the historical (Mazzullo and Bates, 1985; Kind-
inger, 1989) and NGLI data (Sawyer et al., 2001) illustrated
by cores and grabs data, the surficial sandy sediments cor-
responding to type C are widely distributed in the north-
eastern part (Fig. 7), and the clayey sediments compared to
types A and B coincide with the distribution patterns pre-
dicted by ASCS. Also the location of reef and hard ground

relatively matches with that of type D (Fig. 7). The sedi-
ment distributions of the study area characterized by shal-
low water depth (Sawyer et al., 2001) were most likely
reworked and redistributed by waves, tides, currents, and
sea level change (Coleman, 1988).

In summary, the sediments covering the study area are
probably the current Holocene sediments (largely type A
and some parts of type B), mixed sediments (some parts of
types B and C) re-settled by reworking of Pleistocene and
Holocene deposits, and relict sediments (some parts of type
C and largely type D) deposited during Pleistocene.

5. CONCLUSIONS

The relationship of impedance value measured and pre-
dicted from core data and acoustic data shows close agree-
ment. The slight difference between core data and acoustic
data is due to the discrepancy (navigation errors) of acoustic
track line and core location selected for comparison. In
addition, the difference may be caused by sediment distur-
bance during core collection, by frequency dispersion, and
by natural variability.
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By sediment classification using ASCS, the study area
may be divided into four separate provinces (types): i...
sandy and/or silty clay (type A, impedance, 1.6-2.0x10° kg/
m?s), sand-silt-clay and/or clayey sand (type B, impedance,
2.01-2.40%x10° kg/m® s), silt and fine sand (type C, imped-
ance. 2.41-2.90x10® kg/m® s), and medium/coarse sand
(type D, impedance, 2.91-4.0x10° kg/m” s).

As a result, this sediment classification coincides well
with the previous results reported by ground truth. There-
fore, the ASCS can effectively be used to define and clas-
sify sediments and sediment provinces.
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